14-11-2018 Solution
Probability Theory 1 SEMESTRAL Exam Semester I

1. Solution: X and Y are independent random variables with binomial distributions Bin(r, p) and

Bin(s, p) respectively. Z := X +Y has Bin(r + s,p) distribution. The conditional distribution of
X given Z is given by
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where min{0,z — s} < <r.
Solution (b):
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Solution (c):
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Therefore,
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2. Solution: There are r distinguishable balls and n distinguishable boxes By, Bs, ..., B,. Each

ball is put randomly into one of the Boxes.
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has the same distribution for any two distinct a and b. Therefore by the linearity of Expectation,

we get that the expectation of the above random variable is (%) Therefore,
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. Solution: In top-to-random shuffle, let V; be the number of shuffles taken for the initial bot-
tommost card to go from i—th bottommost position to (i + 1)—th bottommost position. Ob-
serve that Ns; = 1. The number of shuffles needed for the initial bottommost card to come
to the top is N = N; + Noy + --- + N5;. Observe that N;’s are independent random variables.
P(N; =k)= £ (1—Z)* D for k e N.
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Similarly,
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O
. Solution (a): Given M, Z has binomial distribution Bin(M, 0.2). Therefore
E(s?|M) = (0.2 % s +0.8)M.
Solution (b): It is given that M has binomial distribution Bin(100,0.5). Therefore
E(s?) = E(E(s?|M)) = E(0.2 %5+ 0.8)™ = (0.1 % s + 0.9)1%.
Therefore Z has binomial distribution Bin(100,0.1).
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