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Probability Theory I SEMESTRAL Exam Semester I

1. Solution: X and Y are independent random variables with binomial distributions Bin(r, p) and
Bin(s, p) respectively. Z := X + Y has Bin(r + s, p) distribution. The conditional distribution of
X given Z is given by
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where min{0, z − s} ≤ x ≤ r.
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Solution (c):
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Therefore,
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2. Solution: There are r distinguishable balls and n distinguishable boxes B1, B2, . . . , Bn. Each
ball is put randomly into one of the Boxes.

XaXb∑
1≤i<j≤n XiXj

has the same distribution for any two distinct a and b. Therefore by the linearity of Expectation,
we get that the expectation of the above random variable is 1
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3. Solution: In top-to-random shuffle, let Ni be the number of shuffles taken for the initial bot-
tommost card to go from i−th bottommost position to (i + 1)−th bottommost position. Ob-
serve that N51 = 1. The number of shuffles needed for the initial bottommost card to come
to the top is N = N1 + N2 + · · · + N51. Observe that Ni’s are independent random variables.
P (Ni = k) = i

51 (1− i
51 )(k−1) for k ∈ N.

E(N) =

51∑
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Similarly,
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4. Solution (a): Given M , Z has binomial distribution Bin(M, 0.2). Therefore

E(sZ |M) = (0.2 ∗ s + 0.8)M .

Solution (b): It is given that M has binomial distribution Bin(100, 0.5). Therefore

E(sZ) = E(E(sZ |M)) = E(0.2 ∗ s + 0.8)M = (0.1 ∗ s + 0.9)100.

Therefore Z has binomial distribution Bin(100, 0.1).
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